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Abstract

Convolutional Neural Networks have made great strides
in object detection and classification, but often at great
computational cost. Meanwhile, attention mechanisms in
image captioning and question-answering tasks, as well as
LSTM networks in language, point to the value of sequential
processing for the understanding of complex signals. We
propose a network architecture inspired by (but ultimately
quite divergent from) biology for the processing of large im-
ages in sophisticated tasks.

1. Introduction
Computer Vision has led the way for much of deep

learning research with large and successful architectures
such as VGG [8] and Microsoft ResNet [4]. Traditionally,
these networks comprise tens of millions of parameters and
are trained on the extremely large ImageNet dataset [2].
ResNet, among the latest of these networks, achieved an
error rate of 4.49% on this challenging task.

However, these architectures are often very difficult to
train on anything but very large datasets. Furthermore, they
may not be entirely suitable for tasks more granular or dif-
ficult than simple identification. One of the anticipated
challenges to the advancement of semantic segmentation is
the loss of information resolution which is traded off by
these traditional architectures [3]. Semantic segmentation
is a task which requires labeling every pixel in an image,
and thus requires detailed scene understanding. Many other
tasks of interest also require detailed scene understanding.

This loss of information is implemented with pooling
layers, which serve two purposes: they more quickly en-
tangle the computation over each part of the image with
information from the whole image, and they allow a con-
volutional network to compute a high-dimensional feature
vector within a tractable amount of memory. Accomplish-
ing these important objectives without a similar loss of in-
formation would be a major step forward with many vision
tasks.

Besides computational concerns, the task of scene un-
derstanding also motivates this work. While the identifica-
tion tasks that motivated the design of convolutional net-
works require shift-invariant features, many object relations
are inherently spatial, and it is these relations that present
the biggest challenge for scene understanding. A sequential
visual processing model offers the same benefits for identi-
fication on a local scale, while providing a second channel
of information for identifying relations among recognized
objects in the scene, in the form of the distances and direc-
tions between processed regions of the image.

While these dual concerns of computational cost and re-
lation recognition motivated the general idea of a sequen-
tial visual processing model, the Visual Saccade architec-
ture that we propose actually fails to address either prob-
lem. This is because of challenges inherent in the non-
differentiability of the operation of selecting a subregion on
which to perform further operations. Our approach requires
a finite partition of the input image, and performing a com-
parison to each subpart at every time step; this is compu-
tationally quite expensive. Furthermore, the network does
not have direct access to information about the spatial rela-
tionships between selected subparts, eliminating the possi-
ble benefit of that information. Nonetheless, we introduce
what we believe to be a fairly novel application of image
generation, for the purpose of querying an input image for
information relevant to a task.

The Visual Saccade architecture analyzes images in a
recurrent fashion by repeatedly ‘viewing’ cropped subsec-
tions of a larger image. The hope of our design is that the
hidden recurrent state entangles the computation over all
viewed portions of the image without direct reliance on con-
volution or pooling beyond processing of each subsection
individually. This potentially allows computation to occur
without loss of resolution. Computation only occurs on one
subsection of the image at a time thereby further reducing
the large spatial complexity (memory burden) of traditional
convolution.

The choice of how to represent questions is a major ex-
perimental parameter in this work. We explored several
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such representations of questions varying from complex
representations such as using final hidden state of an LSTM
network with non-pretrained word-embeddings to simpler
ones as just the average of pre-trained GloVe vectors of the
words in the sentence. Despite having slightly lower accu-
racy than our best result, we report our main result using
the latter representation, due to significant benefits in terms
of computational cost. We test our method on the popular
VQA Challenge [1], which is built on Microsoft’s COCO
dataset [5].

2. Related Work

Much of the interest in attention mechanisms has been
driven by [9]. This work is based on a “soft” attention
mechanism, which produces a continuous-valued map used
to create a weighted sum of information from across an
entire image. A hard attention mechanism is also imple-
mented, though it is less performant and given less atten-
tion.

Soft attention mechanisms are fully differentiable, which
may be a contributing factor in their success; however, they
have a downside in them being computationally costly. Soft
attention networks must process the entire input over which
they wish to compute attention, which saves no memory
over not having an attention mechanism at all. Hard atten-
tion mechanisms have the potential to reduce the memory
burden of processing large inputs in certain situations, such
as tasks where a large image must be viewed repeatedly, but
only some of the image is relevant at any given time.

The most fundamental difference between the hard at-
tention mechanism of the captioning LSTM of [9] and the
method we propose is the lack of immediate feedback at
each time step. The captioning network utilizes recurrence
in order to produce a sequence of output, while our method
utilizes recurrence to accumulate information for later use
in answering the question.

Training for deep learning models without immediate
feedback was explored in depth by [6], who apply reinforce-
ment learning to the problem of playing games on the Atari
2600. There is a subtle difference between this approach
and the methods we propose here; the model from Mnih et
al seeks only to learn the best decision at each time step,
and the time-delayed rewards given are a function only of
those decisions. The network is not recurrent at all. But in
the Visual Saccades model, the hard decisions made by the
model select input information, which is itself fed to part of
the model, which produces answers, on which loss (equiv-
alently, reward) is computed. Both portions of this model
must be trained in tandem.

Figure 1. Overview diagram of the VLSTM architecture, depict-
ing the inputs and outputs involved in the transition between two
successive time steps.

3. Visual Saccade VLSTM

Here we describe the general structure of our model; see
Figure 1 for an overview diagram. The VLSTM system is
built around an LSTM core architecture with input coming
from a relatively small (compared to state-of-the-art image
recognition architecures) convolutional network. The in-
put to that convolutional network, in turn, comes from 1)
a low-resolution version of the input image, 2) a single full-
resolution subregion (or “patch”) of the input image, 3) the
previously-generated query patch, and 4) the representation
of the question; all concatenated into a 10-channel represen-
tation. Unlike other LSTM architectures for similar tasks,
the number of time steps is not tied to the length of any in-
put; rather, at each of an arbitrary number of timesteps, a
different region of the input image is chosen and focused
on. Theoretically, the number of timesteps could even be
learned, though for these experiments we choose an arbi-
trary episode length of 10.

The output of this core LSTM at every time step is in-
terpreted as high-level image features by a deconvolutional
network that mirrors the structure of the input convolu-
tional network. The deconvolutional network generates a
“query patch,” which is then compared with each of the
non-overlapping full-resolution patches of the input image.
The closest-matching patch (in terms of pixel-channel-wise
absolute difference) is chosen as input to the CNN on the
next time step, and during training, the L1 loss between the
generated and chosen patch is backpropagated into the de-
convolutional network.

The question itself is represented as either the final hid-



den state of an LSTM, or as the average of GloVe vectors
of the question’s constituent words. This fixed representa-
tion is passed into the CNN at every time step as a single
channel of the input, as mentioned above.

Question-answering output is produced only at the fi-
nal timestep, when the VLSTM hidden state is passed into
fully-connected layers which produce softmax output and
cross-entropy loss. Additional inputs to the fully-connected
layers are the low-resolution image and the question repre-
sentation.

We describe the component networks in more detail in
the subsections that follow.

3.1. Patch Input Convolutional Network (CNN)

As alluded to above, the input to the CNN at every time
step consists of three 32 × 32 × 3 images and one 1024-
dimensional question representation (described below), re-
shaped into 32 × 32 × 1, all concatenated along the chan-
nel axis. The three images are the generated 3-channel
patch from the previous timestep, the one 3-channel patch
from the input image that most closely matches the gen-
erated patch in terms of L1 distance (the “selection”), and
the 3-channel low-resolution version of the full input im-
age, obtained via bicubic interpolation. The generated patch
is initialized to zeros, and the selection is initialized to the
central-most patch of the image. We pre-process images by
resizing them to 512 × 512 × 3 via bicubic interpolation.
The patches available for selection are obtained by splitting
the resized images into disjoint 32×32×3 patches, i.e. with
a stride of 32. A stride of 16 was considered, which would
have resulted in overlapping patches. However, this was re-
jected due to the risk of poor interaction with the novelty
loss we employed to increase variety in patch selection (see
below).

The input is fed into a four-layer convolutional network
without pooling layers. We use a stride of 2 at every layer to
halve the resolution while doubling the number of channels,
finally reshaping the 2 × 2 × 512 representation into a flat
2048-dimensional vector to feed into the VLSTM. We use
leaky ReLU activations, dropout of 0.2, and batch normal-
ization at every layer.

3.2. Patch Generation and Selection (De-CNN)

Patches are generated by deconvolving the output of the
VLSTM concatenated with the low-resolution image. The
architecture of the deconvolutional network (De-CNN) mir-
rors that of the CNN, using four layers and doubling reso-
lution at each layer. Again, we use dropout of 0.2, batch
normalization, and leaky ReLU activations. The final layer
is a simple affine layer.

The output of the deconvolutional network is taken as a
patch, to be matched to one of the available patches in the
image. The closest patch in terms of L1 distance is taken as

the matching patch, and the L1 loss is backpropagated into
the De-CNN. The De-CNN also receives error gradients via
those channels of the input to the CNN which contain the
generated patch. We term the L1 difference between a gen-
erated patch and the actual patch it most closely resembles
the patch loss. We denote this loss for the patch generated
at time T as

LpatchT = |xT − argmin
j

(x− yj) | (1)

where xT is the generated patch and yj denotes a pre-
segmented image patch.

Early experiments demonstrated that the network was
quite content to sit in one place on the image and generate
minor variations on a theme. To encourage the network to
look at different parts of the image, we introduced an addi-
tional loss term at the output of the De-CNN, which we call
the diff loss. Admittedly naively, we take the diff loss as the
inverse of the sum of the L1 distances between a generated
patch and all previous generated patches. That is,

LdiffT =
1∑T

t=0 |xT − xt|
(2)

where xt is a patch generated at time step t.

3.3. Question Representation (Q Rep)

Multiple representations for question sentences are in-
cluded in our experiments.

The first representation, which we call ‘QLSTM’, is
computed with a 2-layer LSTM network, initialized with
uniform random values and trained end-to-end in the model
with dropout at a 50% rate. This network is tied to the
length of the question sentence, and operates before the
main VLSTM begins processing the image.

The second representation is to use the mean of all GloVe
vectors [7] that make up the sentence. This representation
is pre-trained and may be computed ahead of time.

3.4. VLSTM and Fully-connected Layers

The Visual LSTM is a 2-layer LSTM with 1024 units
per layer. Within the LSTM we use output dropout,
state dropout, and variational recurrence, that is, the same
dropout mask is repeated across timesteps within the same
episode. For all of these dropouts we use a rate of 0.5. We
fix the number of timesteps at 10, arbitrarily. The final hid-
den state of the LSTM is concatenated with the Q Rep, and
passed to the first layer of the fully-connected network. The
fully connected network consists of two hidden layers of
1324 nodes with ReLU activations followed by a 1000-node
softmax layer with cross-entropy loss. The total loss train-



Figure 2. Image-Question pairs from the VQA dataset.

ing the network then is

Ltotal =
1

T

(
T∑

i=1

(λ1Lpatchi
+ λ2Ldiffi)

)
−

N∑
n=1

zn log (pn)

(3)
where T is the total number of time steps (fixed to 10), λ1
and λ2 are fixed to 1, N is the number of answer classes (i.e.
1000), and pn is the output of the softmax layer (predicted
probability) for class n, and zn is 1 if class n is the true
label, and 0 otherwise.

4. Experiments
We evaluate this architecture on the Visual Question An-

swering task [1], because it seems to be a task which re-
quires deep scene understanding, and could benefit from
a technique which successfully improves the integration of
both small details and global context. Questions in the VQA
Challenge dataset frequently reference multiple objects of
either similar or different types.

Specifically, we evaluate on the 1000-class task, where
the model can select between the 1000 most common an-
swers to a question posed about any image. Answers are
considered correct if they match with the responses given
by three out of ten human annotators.

Results we show on this task make use of several differ-
ent representations for questions, and/or several additional
components for the loss function used in training. The final
experiment takes advantage of all features discussed above.

We compare this to several ‘baseline’ experiments which
take advantage only of question representations; these
amount to ‘lucky guesses’, chosen from answers that the
network determines are appropriate for a given question.

5. Discussion
In these experiments, results obtained from question fea-

tures only are in many cases nearly as accurate or just as
accurate as results obtained by combining them with visual

Figure 3. Example of patch generation.

features via the VLSTM architecture. These results suggest
that the accuracy being achieved is due mainly or solely to
question understanding, rather than visual understanding.

In fact, VLSTM output was totally degenerate until the
question representation was provided directly to the final
fully-connected layers.

We attribute this in part to undesirable patch generation
in the trained system. Figure 3 illustrates a typical operation
of the patch generation system. While the GAN output does
vary over time, due in part to the novelty loss term [may be
discussed here or in architecture], it does not closely re-
semble any portion of the actual image. The closest-match
patches selected by this system appear to be largely random
in nature, and unlikely to contain sufficient information for
answering any of the example questions.

The VLSTM hidden state, even at larger sizes, clearly
failed to encode sufficient representational information for
the deconvolution operation to reconstruct any portion of
the image.

Multiple challenges impacted the project. The explo-
ration results also suggest that the amount of visual infor-
mation presented in patches was too small given a limited
number of timesteps. At ten image patches of size 32× 32,
the network could view up to 10,240 pixels in the course of
a single episode. Images, which were all resized to a stan-
dard 256× 256, each have 65,536 pixels. It may have been
more effective to use larger patch sizes, such as 64× 64, or
to operate for a much greater number of timesteps.

However, even training a network of ten saccades was
computationally difficult. Propagation of gradients through
ten timesteps of operation was slow when moderately-sized
convolution and deconvolutional networks were both in-
volved. While spreading out the processing over time-steps
does reduce the difficulty of the forward pass, the backward
pass of backpropagated gradient descent does remains un-
changed. In that regard, the repeated application of a mere
four convolutional layers is equivalent in training difficulty
to a 40-layer network, likely with far less expressive capac-
ity.

This is the main theoretical challenge to the effectiveness
of Saccade VLSTMs.



Question Representation Accuracy
QLSTM w/non-pretrained word embeddings 41.2%
Average of pretrained GloVe vectors 38.67%

Table 1. Baseline Experiments

Model Accuracy
QLSTM + VLSTM 42.0%
QLSTM (not connected to FC Layer) + VLSTM 24.47%
Pretrained GloVe vectors + VLSTM 38.81%
Pretrained GloVe + Patch Loss + Diff Loss + VLSTM 39.86%
Pretrained GloVe + Patch Loss + VLSTM 40.35%
VQA Challenge baseline [1] 62.70%

Table 2. Primary Experiments

6. Conclusion
In this paper, we propose a novel recurrent architecture

for the analysis of large images in complex tasks. This
method is motivated by the structure of biological vision
and implemented using an LSTM framework.We demon-
strate the results of experiments in several configurations
on the task of visual question answering.

These results do fail to show a benefit from the method,
due to the computational costs imposed in attempting to
train recurrent architectures for a large number of timesteps,
and also due to some degeneracy in the methods of foveal
patch selection.

This does contradict one of the suggested benefits of this
approach, namely the efficiency of sequential processing. It
may be that our ability to emulate biological neural struc-
tures is limited by the nature of backpropagation as we un-
derstand it today, which requires preserving all information
across time throughout the operation of a model for the pur-
poses of optimization.

However, many alternative configurations have also been
proposed, and in the future, such sequential techniques may
bear fruit for vision tasks.
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